class: center, middle, inverse, title-slide # Methods for Measuring Reproducibility of
Data Collection and Analysis in
Automated Forensic Firearms Analysis ### Kiegan Rice ### Iowa State University Department of Statistics ### May 5, 2020 --- <style> /* colors: #EEB422, #8B0000, #CDC9C9, #00a8cc */ a, a > code { color: #EEB422; text-decoration: none; } .remark-slide-content { background-color: #FFFFFF; border-top: 80px solid #CDC9C9; font-size: 20px; font-weight: 300; line-height: 1.5; padding: 1em 2em 1em 2em } .inverse { background-color: #CDC9C9; border-top: 80px solid #CDC9C9; text-shadow: none; background-position: 50% 75%; background-size: 150px; } .remark-slide-content > h1 { font-family: 'Goudy Old Style'; font-weight: normal; font-size: 45px; margin-top: -95px; margin-left: -00px; color: #8B0000; } .title-slide { background-image: url(images/title-background.png); background-size: cover; border-top: 0px solid #8B0000; } .title-slide > h1 { color: #FFFFFF; font-size: 35px; text-shadow: none; font-weight: 400; text-align: center; margin-left: 30px; margin-right: 30px; padding-top: 180px; } .title-slide > h2 { margin-top: -25px; padding-bottom: -20px; color: #FFFFFF; text-shadow: none; font-weight: 300; font-size: 35px; text-align: center; margin-left: 15px; } .title-slide > h3 { color: #FFFFFF; text-shadow: none; font-weight: 300; font-size: 20px; text-align: center; margin-left: 15px; margin-bottom: -20px; } body { font-family: 'Goudy Old Style'; } .remark-slide-number { font-size: 13pt; font-family: 'Goudy Old Style'; color: #272822; opacity: 1; } .inverse .remark-slide-number { font-size: 13pt; font-family: 'Goudy Old Style'; color: #FAFAFA; opacity: 1; } </style> <style type="text/css"> .tiny{font-size: 30%} .small{font-size: 50%} .medium{font-size: 75%} .large{font-size: 110%} .left-code { width: 40%; height: 92%; float: left; } .right-plot { width: 59%; float: right; padding-left: 1%; } .left-text { width: 59%; float: left; } .right-code { color: #777; width: 40%; height: 92%; float: right; } .img{ position: absolute; top: 50%; margin-right: 15px; transform: translateY(-50%); } </style> # Acknowledgments ### Funding statement This work was partially funded by the Center for Statistics and Applications in Forensic Evidence (CSAFE) through Cooperative Agreement #70NANB15H176 between NIST and Iowa State University, which includes activities carried out at Carnegie Mellon University, University of California Irvine, University of Virginia and Duke University. ### Other assistance - This work was advised by my major professors, Dr. Heike Hofmann and Dr. Ulrike Genschel - The data used in this work was collected at the Roy J. Carver High Resolution Microscopy Facility at Iowa State University - This study would not be possible without the following individuals: - undergraduate bullet scanning team - Curtis Mosher, Ph.D., lab director --- # Outline <br /> - Reproducibility in Data Analysis <br /> - Forensic Firearms Analysis <br /> - Study Design and Data Collection <br /> - Modeling Approach <br /> - Results and Conclusions --- class: inverse, middle, center # Defining Reproducibility in Data Analysis --- # Data Analysis as a Process Any data analysis can be conceptualized as a **pipeline**<sup>1</sup>. - linear, sequential actions - raw data to result .footnote[[1] (Buja, Asimov, Hurley, and McDonald, 1988)] -- .center[.img[ <img src="images/pipeline/pipeline_basic.png" width="800px" /> ]] --- # Data Analysis as a Process Any data analysis can be conceptualized as a **pipeline**<sup>1</sup>. - linear, sequential actions - raw data to result .footnote[[1] (Buja, Asimov, Hurley, et al., 1988)] .center[.img[ <img src="images/pipeline/pipeline_v1_update.png" width="800px" /> ]] --- # Variation in Data Analysis <br /> (1) varying input (*variation in data measurement*) (2) (3) <br /> <img src="images/pipeline/pipeline_inputs_update.png" width="800px" /> --- # Variation in Data Analysis <br /> (1) varying input (*variation in data measurement*) (2) varying methods (*decisions by the statistician*) (3) <br /> <img src="images/pipeline/pipeline_processing_update.png" width="800px" /> --- # Variation in Data Analysis <br /> (1) varying input (*variation in data measurement*) (2) varying methods (*decisions by the statistician*) (3) varying code (*differences in underlying software packages*) <br /> <img src="images/pipeline/pipeline_coding_update.png" width="800px" /> --- # Process Reproducibility **Is this process reproducible?** - variability of quantitative output - applies to multiple *types* of variation <br /> -- **Application to large-scale data analysis process** - bullet matching in forensic firearms analysis --- class: inverse, middle, center # Forensic Firearms Analysis --- # Bullets as Forensic Evidence <br /> `$$\begin{array}{rcl} \textbf{microimperfections in barrel} & \to & \mbox{engraved patterns on bullet}\\ \mbox{lands} & \to & \mbox{land engraved areas (LEAs)}\\ \mbox{6 lands} & \to & \mbox{6 LEAs}\\ \end{array}$$` <br /> .center[ <img src="images/scanning-stage0.png" width="400px" /><img src="images/bullet-sketch-whitespace.png" width="300px" /> ] <br /> .center[striation patterns compared on two LEAs] --- # Bullets as Forensic Evidence <br /> .center[ <img src="images/bullet-lea-area-markings.png" width="900px" /> ] --- # Criticisms of Forensic Firearms Analysis **Question of interest**: same source or different source **Assumptions**: - consistency: a gun will leave same striation pattern on each bullet over time - uniqueness: no two guns will produce the same striation patterns **Recent criticisms**<sup>2</sup> <sup>3</sup>: - lack of peer-reviewed scientific research - lack of large-scale studies - quantifiable error rates **Proposed solution**: image-analysis algorithms for bullet comparison .footnote[ [2] (National Research Council, 2009) [3] (President's Council of Advisors on Science and Technology, 2016) ] --- # Automated Bullet Land Comparison Hare et al. of the Center for Statistics and Applications in Forensic Evidence (CSAFE) developed an automated bullet-matching process which completes pairwise comparisons of bullet LEAs<sup>4</sup>. .footnote[ [4] (Hare, Hofmann, and Carriquiry, 2017) ] .left-code[ <br /> The Hare et al. method processes 3D scans by: 1. taking a horizontal crosscut 2. removing extraneous GEA data 3. removing bullet curvature 4. smoothing Result: **2D LEA signature** - represents striation pattern ] .right-plot[ <img src="images/process_vertical_png.png" width="550px" /> ] --- # Bullet Analysis as a Process Hare et al. process as pipeline: <img src="images/pipeline/pipeline_bullet_update.png" width="800px" /> <br /> **Is the process reproducible?** -- <br /> <img src="images/pipeline/pipeline_inputs_bullets_update2.png" width="800px" /> --- class: inverse, middle, center # Measuring Repeatability and Reproducibility --- # Gauge Repeatability and Reproducibility **Gauge Repeatability and Reproducibility** studies are used in engineering to test a measurement system. Gauge R&R studies focus on *repeated measurements* 1. **repeatability** of measurements under the same environmental conditions - same object, same operator 2. **reproducibility** of measurements under different environmental conditions - same object, different operators --- # Gauge Repeatability and Reproducibility Let `\(y_{ijk}\)` be the measured value of part `\(i\)`, taken by operator `\(j\)`, at repetition `\(k\)`. `$$y_{ijk} = \mu + \alpha_{i} + \beta_{j} + \alpha\beta_{ij} + \epsilon_{ijk}$$` with fixed, unknown process mean `\(\mu\)` and random effects `$$\begin{array}{rl} \alpha_i & \quad \mbox{for Part}\ i,\ \mbox{following a}\ N(0, \sigma^2_{\alpha}), \\ \beta_j &\quad \mbox{for Operator}\ j,\ \mbox{following a}\ N(0, \sigma^2_{\beta})\\ \alpha\beta_{ij} & \quad \mbox{for Part}\ i\times\mbox{Operator}\ j,\ \mbox{following a}\ N(0, \sigma^2_{\alpha\beta}) \\ \epsilon_{ijk} & \quad \mbox{is measurement error across repetitions},\ \mbox{following a}\ N(0, \sigma^2). \end{array}$$` We assume: - all `\(\alpha_i,\ \beta_j,\ \alpha\beta_{ij},\ \epsilon_{ijk}\)` are independent random variables - `\(\sigma^2_{\alpha},\ \sigma^2_{\beta},\ \sigma^2_{\alpha\beta},\ \sigma^2\)` are variance components --- # Gauge Repeatability and Reproducibility Variance components from the model can be summarized by two quantities: .center[ `\(\sigma_{\mbox{repeatability}} = \sqrt{\sigma^2},\)` measurement error for *fixed environmental conditions*. <br /> `\(\sigma_{\mbox{reproducibility}} = \sqrt{\sigma^2_{\beta} + \sigma^2_{\alpha\beta}},\)` variability in environmental conditions *for a fixed object*. ] --- class: inverse, middle, center # Study Design and Data Collection --- # Three-Factor Study Design .left-text[ Consider barrel-lands to be the objects we are measuring. **Parts**: bullets - fired through the same gun barrel - striation mark is pattern we want reproduced - LEAs from same barrel *similar*, but not *identical* **Operators**: microscope operators - responsible for physical staging **Devices**: microscopes **Repetition** - scans of same barrel-land in same conditions (same bullet, operator, and microscope) ] .right-code[ <br /> <img src="images/barrel-cropped-annotated.png" width="500px" /> ] --- # Scale of Study <br /> - **machines**: 2 Sensofar Confocal Light Microscopes - **operators**: 8 trained undergraduate microscope operators - **bullets**: 9 bullets - 3 bullets from 3 barrels each - each barrel considered separately when modeling `$$\begin{array}{rccc} \hline \mbox{Coded Name} & \mbox{Test Set Name} & \mbox{Barrel Type} & \mbox{Ammunition Details} \\ \hline \textbf{Barrel Orange} & \mbox{Hamby set 224} & \mbox{Ruger P-85} & \mbox{Winchester 9mm copper} \\ \textbf{Barrel Pink} & \mbox{Houston set 3} & \mbox{Ruger LCP} & \mbox{American Eagle 124-grain 9mm copper} \\ \textbf{Barrel Blue} & \mbox{LAPD} & \mbox{Beretta 92 F/FS} & \mbox{Winchester 115-grain 9mm copper} \\ \hline \end{array}$$` <br /> - **repetitions**: 3-5 repetitions for each set of environmental conditions - one round: one scan of each bullet LEA on each machine - operators completed at least 3 rounds --- # Collected Data Description Resolution: `\(0.645\ \mu m\)`/pixel Equidistant `\(\mathbf{x}\)` locations `\(x_i\)`, `\(i = 1, \dots, n_L\)` <img src="images/variability/sig-data-structure.png" width="900px" /> --- # Data Exposition <img src="images/variability/signatures-blue-land6.png" width="900px" /> -- <img src="images/variability/blue-land1-expo.png" width="250px" /><img src="images/variability/blue-land2-expo.png" width="250px" /><img src="images/variability/blue-land3-expo.png" width="250px" /><img src="images/variability/blue-land4-expo.png" width="250px" /><img src="images/variability/blue-land5-expo.png" width="250px" /> --- # Data Exposition .center[ <img src="images/variability/signatures-orange-land2.png" width="800px" /><img src="images/variability/signatures-pink-land4.png" width="800px" /> ] --- class: inverse, middle, center # Statistical Modeling Approach --- # Two stages of modeling .center[**2D LEA signatures** <img src="images/variability/signatures-blue-land6.png" width="600px" /> ] -- .center[ **Pairwise similarity scores** <img src="images/variability/two-sigs-aligned.png" width="600px" /> ] --- # Signature-level model Three-factor Gauge R&R random effects model: Let `\(z_{jkmn}\)` be the measured response for bullet `\(j\)`, operator `\(k\)`, machine `\(m\)`, and repetition `\(n\)`. `$$\begin{array}{rl} z_{jkmn} & = \mu + b_j + o_k + d_m + bo_{jk} + bd_{jm} + od_{km} + bod_{jkm} + e_{jkmn}, \end{array}$$` with fixed, unknown process mean `\(\mu\)` and random effects .medium[ `$$\begin{array}{rl} b_{j} & \quad \mbox{for Bullet}\ j,\ \mbox{following a}\ N(0, \sigma^2_{b})\\ o_{k} &\quad \mbox{for Operator}\ k,\ \mbox{following a}\ N(0, \sigma^2_{o}) \\ d_{m} & \quad \mbox{for Machine}\ m\,\ \mbox{following a}\ N(0, \sigma^2_{d}) \\ bo_{jk} & \quad \mbox{for Bullet}\ j\times\mbox{Operator}\ k,\ \mbox{following a}\ N(0, \sigma^2_{bo}) \\ bd_{jm} & \quad \mbox{for Bullet}\ j\times\mbox{Machine}\ m,\ \mbox{following a}\ N(0, \sigma^2_{bd}) \\ od_{km} & \quad \mbox{for Operator}\ k\times\mbox{Machine}\ m,\ \mbox{following a}\ N(0, \sigma^2_{od}) \\ bod_{jkm} & \quad \mbox{for Bullet}\ j\times\mbox{Operator}\ k\times\mbox{Machine}\ m,\ \mbox{following a}\ N(0, \sigma^2_{bod}) \\ e_{jkmn} & \quad \mbox{is error across repetitions},\ \mbox{following a}\ N(0, \sigma^2) \\ \end{array}$$` ] -- Several adaptations to this model at the LEA signature level: 1. location-based mean structure 2. accounting for location 3. removing dependence by subsampling --- # Signature-level model **1. location-based mean structure:** `\(\mu = \mu_{i}\)` .center[ <img src="images/variability/signatures-blue-land6.png" width="700px" /><img src="images/variability/signatures-centered-blue-land6.png" width="700px" /> ] --- # Signature-level model **2. accounting for location** .center[ <img src="images/variability/mean-structure-modeling-plot2.png" width="800px" /> ] --- # Signature-level model **3. removing data dependence** .center[ <img src="images/variability/signatures-blue-land6.png" width="700px" /><img src="images/variability/signatures-centered-blue-land6.png" width="700px" /> ] --- # Signature-level model **3. removing data dependence** Autocorrelation functions (ACF) for signatures show extent of dependence: .center[ <img src="images/variability/basic-acf-plot.png" width="400px" /><img src="images/variability/oneline-acf-plot.png" width="400px" /> ] --- # Signature-level model **3. removing data dependence** Autocorrelation functions (ACF) for signatures show extent of dependence: .center[ <img src="images/variability/acf-three-examples.png" width="600px" /> ] --- # Signature-level model Sampling data at every `\(100^{th}\)` `\(x_i\)` location: .center[ <img src="images/variability/signature-subsampling-one-phase-plot2.png" width="600px" /> ] --- # Signature-level model Sampling data at every `\(100^{th}\)` `\(x_i\)` location: .center[ <img src="images/variability/one_phase_locations.png" width="900px" /> ] --- # Signature-level model Sampling data at every `\(100^{th}\)` `\(x_i\)` location: .center[ <img src="images/variability/signature-subsampling-one-phase-plot2.png" width="600px" /> ] --- # Signature-level model Sampling data at every `\(100^{th}\)` `\(x_i\)` location: .center[ <img src="images/variability/one_phase_data.png" width="900px" /> ] --- # Signature-level model Sampling data at every `\(100^{th}\)` `\(x_i\)` location: .center[ <img src="images/variability/signature-subsampling-one-phase-plot2.png" width="600px" /> ] --- # Signature-level model Sampling data at every `\(100^{th}\)` `\(x_i\)` location: .center[ <img src="images/variability/one_phase_resids.png" width="900px" /> ] Major data reduction when subsampling. --- # Signature-level model .center[ <img src="images/variability/ten-phase-subsampling-explainer-2.png" width="570px" /> ] --- # Signature-level model Signature-level model for individual land `\(L\)`: Let `\(z_{ijkmn}\)` be the measured height value for subsampled location `\(i = 1, \dots, n_{L}\)`, bullet `\(j = 1, 2, 3\)`, operator `\(k = 1, \dots, 5, \dots 8\)`, machine `\(m = 1, 2\)` and scan repetition `\(n = 1, 2, 3, 4, 5\)`. `$$\begin{array}{rl} z_{ijkmn} & = \mu_{i} + b_{ij} + o_{ik} + d_{im} + bo_{ijk} + bd_{ijm} + od_{ikm} + bod_{ijkm} + e_{ijkmn} \end{array}$$` with fixed, location-based mean `\(\mu_{i}\)`, and random effects .medium[ `$$\begin{array}{rl} b_{ij} & \quad \mbox{for Bullet}\ j\ \mbox{by location}\ i,\ \mbox{following a}\ N(0, \sigma^2_{b})\\ o_{ik} &\quad \mbox{for Operator}\ k\ \mbox{by location}\ i,\ \mbox{following a}\ N(0, \sigma^2_{o}) \\ d_{im} & \quad \mbox{for Machine}\ m\ \mbox{by location}\ i,\ \mbox{following a}\ N(0, \sigma^2_{d}) \\ bo_{ijk} & \quad \mbox{for Bullet}\ j\times\mbox{Operator}\ k\ \mbox{by location}\ i,\ \mbox{following a}\ N(0, \sigma^2_{bo}) \\ bd_{ijm} & \quad \mbox{for Bullet}\ j\times\mbox{Machine}\ m\ \mbox{by location}\ i,\ \mbox{following a}\ N(0, \sigma^2_{bd}) \\ od_{ikm} & \quad \mbox{for Operator}\ k\times\mbox{Machine} \ m\ \mbox{by location}\ i,\ \mbox{following a}\ N(0, \sigma^2_{od}) \\ bod_{ijkm} & \quad \mbox{for Bullet}\ j\times\mbox{Operator}\ k\times\mbox{Machine}\ m\ \mbox{by location}\ i,\\ & \quad \quad \quad \mbox{following a}\ N(0, \sigma^2_{bod}) \\ e_{ijkmn} & \quad \mbox{is error across repetitions},\ \mbox{following a}\ N(0, \sigma^2). \\ \end{array}$$` ] We assume each random effect is an independent random variable. --- # Signature-level model Signature-level *pooled* model Let `\(z_{\color{red}Lijkmn}\)` be the measured height value for **Barrel-Land L** = `\(1, \dots, 6\)`, subsampled location `\(i = 1, \dots, n_{L}\)`, bullet `\(j = 1, 2, 3\)`, operator `\(k = 1, \dots, 5, \dots 8\)`, machine `\(m = 1, 2\)` and scan repetition `\(n = 1, 2, 3, 4, 5\)`. `$$\begin{array}{rl} z_{\color{red}Lijkmn} & = \mu_{\color{red}Li} + b_{\color{red}Lij} + o_{\color{red}Lik} + d_{\color{red}Lim} + bo_{\color{red}Lijk} + bd_{\color{red}Lijm} + od_{\color{red}Likm} + bod_{\color{red}Lijkm} + e_{\color{red}Lijkmn} \end{array}$$` with fixed, location-based mean for land L `\(\mu_{\color{red}Li}\)`, and random effects .medium[ `$$\begin{array}{rl} b_{\color{red}Lij} & \quad \mbox{for Bullet}\ j\ \mbox{by location}\ \color{red}Li,\ \mbox{following a}\ N(0, \sigma^2_{b})\\ o_{\color{red}Lik} &\quad \mbox{for Operator}\ k\ \mbox{by location}\ \color{red}Li,\ \mbox{following a}\ N(0, \sigma^2_{o}) \\ d_{\color{red}Lim} & \quad \mbox{for Machine}\ m\ \mbox{by location}\ \color{red}Li,\ \mbox{following a}\ N(0, \sigma^2_{d}) \\ bo_{\color{red}Lijk} & \quad \mbox{for Bullet}\ j\times\mbox{Operator}\ k\ \mbox{by location}\ \color{red}Li,\ \mbox{following a}\ N(0, \sigma^2_{bo}) \\ bd_{\color{red}Lijm} & \quad \mbox{for Bullet}\ j\times\mbox{Machine}\ m\ \mbox{by location}\ \color{red}Li,\ \mbox{following a}\ N(0, \sigma^2_{bd}) \\ od_{\color{red}Likm} & \quad \mbox{for Operator}\ k\times\mbox{Machine} \ m\ \mbox{by location}\ \color{red}Li,\ \mbox{following a}\ N(0, \sigma^2_{od}) \\ bod_{\color{red}Lijkm} & \quad \mbox{for Bullet}\ j\times\mbox{Operator}\ k\times\mbox{Machine}\ m\ \mbox{by location}\ \color{red}Li,\\ & \quad \quad \quad \mbox{following a}\ N(0, \sigma^2_{bod}) \\ e_{\color{red}Lijkmn} & \quad \mbox{is error across repetitions},\ \mbox{following a}\ N(0, \sigma^2). \\ \end{array}$$` ] We assume each random effect is an independent random variable. --- class: inverse, middle, center # Results --- # Signature-level results: Barrel Orange Ten phased models, distribution of estimated variance components across the ten phases .center[ <img src="images/variability/orange-sig-model-results.png" width="700px" /> ] --- # Signature-level results: Barrel Orange Tank rash occurs when a bullet strikes the sides or bottom of a water recovery tank; striation patterns are disrupted. .center[ <img src="images/variability/tank-rash-comparison1.png" width="700px" /><img src="images/variability/tank-rash-example1.png" width="700px" /> ] --- # Signature-level results: Barrel Orange Ten phased models, distribution of estimated variance components across the ten phases .center[ <img src="images/variability/orange-sig-model-results-tr.png" width="750px" /> ] --- # Signature-level results: Barrel Pink Ten phased models, distribution of estimated variance components across the ten phases .center[ <img src="images/variability/pink-sig-model-results.png" width="700px" /> ] --- # Signature-level results: Barrel Pink Ten phased models, distribution of estimated variance components across the ten phases .center[ <img src="images/variability/pink-sig-model-results-tr.png" width="700px" /> ] --- # Signature-level results: Barrel Blue Ten phased models, distribution of estimated variance components across the ten phases .center[ <img src="images/variability/blue-sig-model-results.png" width="700px" /> ] --- # Signature-level results: All Barrels .pull-left[ Barrel Orange .medium[ `$$\begin{array}{ccc} \mbox{Barrel-Land} & \sigma_{repeatability} & \sigma_{reproducibility} \\ \hline \textbf{O-1} & \textit{0.32} & \textit{0.29}\\ \textbf{O-2} & 0.55 & 0.47 \\ \textbf{O-3} & 0.42 & 0.58 \\ \textbf{O-4} & \textit{0.39} & \textit{0.22} \\ \textbf{O-5} & 0.61 & 0.53 \\ \textbf{O-6} & \textit{0.37} & \textit{0.34}\\ \hline \textbf{Pooled} & \textit{0.48} & \textit{0.48}\\ \hline \end{array}$$` ] Barrel Pink .medium[ `$$\begin{array}{ccc} \mbox{Barrel-Land} & \sigma_{repeatability} & \sigma_{reproducibility} \\ \hline \textbf{P-1} & 1.25 & 0.86 \\ \textbf{P-2} & 1.83 & 1.35 \\ \textbf{P-3} & 0.93 & 0.84 \\ \textbf{P-4} & 0.77 & 0.59 \\ \textbf{P-5} & 0.89 & 0.56 \\ \textbf{P-6} & \textit{0.99} & \textit{0.71} \\ \hline \textbf{Pooled} & \textit{1.16} & \textit{0.88} \\ \hline \end{array}$$` ] ] .pull-right[ Barrel Blue .medium[ `$$\begin{array}{ccc} \mbox{Barrel-Land} & \sigma_{repeatability} & \sigma_{reproducibility} \\ \hline \textbf{B-1} & 0.39 & 0.35 \\ \textbf{B-2} & 0.37 & 0.35 \\ \textbf{B-3} & 0.37 & 0.34 \\ \textbf{B-4} & 0.54 & 0.49 \\ \textbf{B-5} & 0.45 & 0.50 \\ \textbf{B-6} & 0.56 & 0.68 \\ \hline \hline \textbf{Pooled} & 0.46 & 0.48 \\ \hline \end{array}$$` ] ] --- class: inverse, middle, center # Conclusions --- # Process Insights **Is the process reproducible?** - *Yes!* Reproducibility standard deviation < 1 micron - Engraving differences across bullets - Differences across barrels Barrel-Land differences - Differences in reproducibility by Barrel-Land - Pooled model provides overall summary **Note**: Process depends on the steps in the "middle" .center[ <img src="images/pipeline/pipeline_inputs_bullets_update2.png" width="600px" /> ] --- # Additional Work Pairwise-level modeling and results Additional barrel types Development of scan quality metrics **Other types of reproducibility** - Computational reproducibility concerns - Differences in processing methods --- class: inverse, middle, center # Questions? <!-- --- --> <!-- # References --> <!-- ```{r refs, echo=FALSE, results="asis"} --> <!-- PrintBibliography(myBib) --> <!-- ``` -->